editor's blog
Subscribe Now

Concurrent Sign-off Analysis

I’m getting a sense that we’re back into the small-company-friendly phase of the EDA company cycle. A number of newcomers (which means they’ve been around working quietly for several years and are now launching) are knocking on doors.

Invarian is one such company, and they’ve launched two analysis platforms: their “InVar Pioneer Power Platform”, with power, IR-drop/EM, and thermal analysis, and their “InVar 3D Frontier Platform” for thermal analysis of 3D ICs.

Their claim to fame is that they’re the only tool that can handle true full-chip sign-off analysis at 28 nm and below, with SPICE accuracy and fast run times (“fast” being a relative term). In particular, for digital designs, they do concurrent analysis of timing, thermal, EM/IR, and power. Yeah, they have a timing engine – and they say it’s really good, too. But trying to displace PrimeTime as the gold standard is a tough call; that’s not their goal. So the timing engine serves the other pieces.

The whole concurrent thing means that, instead of running one analysis to completion and then handing those results to the next engine for different analysis, they run the engines together. As they iterate towards convergence, they update a common database on each cycle, so each engine is using a slightly-more-converged value from the other engines on every new cycle. They say that this speeds overall convergence, taking analysis that used to require several days to run and managing it in a few hours instead, with no loss of accuracy.

Of course, having a new tool also means that you can build in parallelism from the get-go, leveraging multicore and multi-machine computing resources.

For analog sign-off, they can do co-simulation with the usual SPICE suspects. And for 3D analysis for packages with multiple dice, they boast models that are more accurate and realistic than the standard JEDEC models. And they claim greater ease of use, making rules (which are constantly evolving) more manageable in particular.

You can find more in their release.

Leave a Reply

featured blogs
Apr 19, 2024
In today's rapidly evolving digital landscape, staying at the cutting edge is crucial to success. For MaxLinear, bridging the gap between firmware and hardware development has been pivotal. All of the company's products solve critical communication and high-frequency analysis...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...
Apr 18, 2024
See how Cisco accelerates library characterization and chip design with our cloud EDA tools, scaling access to SoC validation solutions and compute services.The post Cisco Accelerates Project Schedule by 66% Using Synopsys Cloud appeared first on Chip Design....

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTekā€™s design process usually relies on human intuition, but with Cadenceā€™s Optimality Intelligent System Explorer and Clarity 3D Solver, theyā€™ve increased design productivity by 75X. The Optimality Explorerā€™s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured chalk talk

Miniaturization Impact on Automotive Products
Sponsored by Mouser Electronics and Molex
In this episode of Chalk Talk, Amelia Dalton and Kirk Ulery from Molex explore the role that miniaturization plays in automotive design innovation. They examine the transformational trends that are leading to smaller and smaller components in automotive designs and how the right connector can make all the difference in your next automotive design.
Sep 25, 2023
25,618 views