editor's blog
Subscribe to EE Journal Daily Newsletter
1 + 9 =

Directing DSA

DSA – Directed Self Assembly – is 2/3 natural and 1/3 artificial. The “self assembly” part (two of the three words, to make the scoring clear) is a natural phenomenon governing how mutually immiscible materials will resolve their differences in staking out territory.

It’s the “directed” part that makes it a useful tool. We’ve looked before at some basics for controlling how to create lines, for instance. But actual circuit patterns will be more complex, and several SPIE Litho presentations focused on different ways of affecting the outcome of the self-assembly process.

MIT’s Professor Ross, for example, talked about using posts to direct the outcome. To help bias what goes where, they would “functionalize” the posts by “brushing” them with one or the other of the block copolymers, establishing an affinity for one and a “don’t go there” for the other. The big question then becomes, where to place these posts?

Given a set of posts, there are some formidable-sounding techniques for calculating what the impact will be and how the block copolymers will lay out: Self-Consistent Field Theory (or Mean Field Theory) and Dissipative Particle Dynamics, both of which deal with reducing complex fields to particles to simplify the modeling.

But the real question is, if you want a given pattern, how do you go backwards to figure out the positioning and functionalizing of the posts? Apparently, the results aren’t going to be intuitive. For example, if you want to create a T-shaped structure, you need to omit a post from the center. Go figure.

So at this point, it appears there isn’t a deterministic path to calculate where the posts should be; they used a Monte Carlo approach to back into the solution. Which may end up being satisfactory for a while or for small circuits, but for an entire large-scale SoC-scale design, I would assume (and, to be clear, this is conjecture on my part) that some separability would apply such that you could partition the entire thing into smaller solvable regions, but you’d need to be able to deal with the region boundaries to account for their interactions.

The bottom line here is that, as DSA develops into a viable production process, there will be new challenges for EDA folks to help turn circuits into DSA guiding patterns.

If you have the SPIE Litho proceedings, you can find more of the MIT presentation in paper 8680-1.

Leave a Reply

featured blogs
Dec 12, 2017
The latest semi-annual RISC-V workshop took place the week after Thanksgiving. The last one was in Shanghai. The next one is in Barcelona. This one was in...Milpitas. At least it didn't require a plane to get there. It was at what I think of as SanDisk, but has been West...
Dec 12, 2017
Samtec is expanding its line of ExaMAX® high speed backplane connectors. The new system is a direct mate orthogonal (DMO) configuration. These products were recently on display at SC17 in Denver. In the video above, Jonathan Sprigler, Samtec’s Backplane Product Manager...
Nov 16, 2017
“Mommy, Daddy … Why is the sky blue?” As you scramble for an answer that lies somewhere between a discussion of refraction in gasses and “Oh, look—a doggie!” you already know the response to whatever you say will be a horrifyingly sincere “B...
Nov 07, 2017
Given that the industry is beginning to reach the limits of what can physically and economically be achieved through further shrinkage of process geometries, reducing feature size and increasing transistor counts is no longer achieving the same result it once did. Instead the...