editor's blog
Subscribe Now

3D-IC Planning

During Cadence’s recent CDNlive event, I had a discussion with Kevin Rinebold to talk about 3D-IC planning and design. Actually, it’s more than that, covering all of the multi-die/package combinations like system-in-package (SiP), complex PC boards, and interposer-based solutions. The basic issue is that it’s becoming increasingly difficult to separate die design from board/package design; you may have to plan both together.

Said another way, what used to be board design duties have encroached on die design as packages have started to look more and more like micro-PCBs. The “lumpiness” of old-fashioned design is giving way to a more distributed approach as the “lumps” interact in non-lumpy ways.

Cadence’s approach splits the process in two: planning and implementation. Their focus during our discussion was the planning portion. Why split this part of the process out? Because it’s generally being done by the packaging people (“OSATs”), not the silicon people. So the OSATs will do high-level planning – akin to floorplanning on a die (and may actually involve floorplanning on a substrate).

They hand their results to the implementation folks via an abstract file and, possibly, some constraints to ensure that critical concerns will be properly addressed during design. The abstract file isn’t a view into a database; it is a one-off file, so if changes are made to the plan, new abstracts can (or should) be generated.

Cadence says the key to this is their OrbitIO tool, from their Sigrity group. It allows mechanical planning – things like ensuring that power and ground pins are located near their respective planes. They can also do some power IR drop analysis, although more complete electrical capabilities will come in the future.

There’s one other reason why the planning and implementation are done with completely different tools (mediated by the abstract file): OSATs tend to work on Windows machines, while designers tend to work on Linux machines. No, this is not an invitation to debate. (Oh, wait, Apple isn’t involved in this comparison… OK… never mind…)

Leave a Reply

featured blogs
Apr 23, 2024
The automotive industry's transformation from a primarily mechanical domain to a highly technological one is remarkable. Once considered mere vehicles, cars are now advanced computers on wheels, embodying the shift from roaring engines to the quiet hum of processors due ...
Apr 22, 2024
Learn what gate-all-around (GAA) transistors are, explore the switch from fin field-effect transistors (FinFETs), and see the impact on SoC design & EDA tools.The post What You Need to Know About Gate-All-Around Designs appeared first on Chip Design....
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured chalk talk

Industrial Drives and Pumps -- onsemi and Mouser Electronics
Sponsored by Mouser Electronics and onsemi
In this episode of Chalk Talk, Amelia Dalton and Bob Card and Hunter Freberg from onsemi discuss the benefits that variable frequency drive, semiconductor optimization, and power switch innovation can bring to industrial motor drive applications. They also examine how our choice of isolation solutions and power packages can make a big difference for these kinds of applications and how onsemi’s robust portfolio of intelligent power modules, current sensing solutions and gate drivers are a game changer when it comes to industrial motor drive applications.
Mar 25, 2024
4,124 views