editor's blog
Subscribe Now

A Fully-Differential Accelerometer

Accelerometers are used for a wide variety of applications (which we’ll look at more specifically soon). Particularly demanding are automotive applications, not least because of the harsh conditions and huge amount of noise that they must tolerate. That noise can be electrical or simply “ambient vibration” that is not of interest.

Electrically, differential signaling is often used to reject common-mode noise. But one paper at ISSCC took the concept all the way back to the proof mass: a team from Robert Bosch split the proof mass, working then with what are nominally two identical half-masses. This sets up a differential signal flow from the get-go.

Of course, the masses aren’t going to be exactly the same; various differences are averaged out by swapping back and forth (to oversimplify). Chopping is also used to boost near-DC noise up away from the frequencies that matter, although the process does result in some noise being moved into the way instead of out of the way. In order to minimize the effect of this, they used a pseudo-random signal for chopping so that the energy of this noise is, to use their word, “smeared” across the spectrum, rendering it largely impotent.

You can find circuit details and results in the ISSCC proceedings, paper 22.1

Leave a Reply

featured blogs
Jul 20, 2018
https://youtu.be/KwrfcMtbMDM Coming from CDNLive Japan (camera Asushi Tanaka) Monday: Nicolas's Recipe for Digital Marketing in EDA Tuesday: Embargoed announcement Wednesday: Trends, Technologies, and Regulation in China's Auto Market Thursday: Breakfast Bytes Guide...
Jul 19, 2018
In the footer of Samtec.com, we'€™ve always made it easy to contact us by phone, email, or live chat (even fax back in the day!). To continue to progress this theme, you'€™ll now find a new helpful tool in the footer area of Samtec.com. This tool will match you up with yo...
Jul 16, 2018
Each instance of an Achronix Speedcore eFPGA in your ASIC or SoC design must be configured after the system powers up because Speedcore eFPGAs employ nonvolatile SRAM technology to store the eFPGA'€™s configuration bits. Each Speedcore instance contains its own FPGA configu...
Jul 12, 2018
A single failure of a machine due to heat can bring down an entire assembly line to halt. At the printed circuit board level, we designers need to provide the most robust solutions to keep the wheels...