editor's blog
Subscribe Now

From Relative to Absolute Altitude

GPS is notoriously inaccurate when it comes to vertical positioning. And it disappears entirely inside buildings. So pressure sensors are used to help calculate vertical positioning.

The thing is, a pressure sensor decides your altitude based on the pressure of the air, so it must be comparing it to some baseline. The problem with that is that there is no firm baseline pressure: weather, as we all know, affects the air pressure.

That means that pressure is, first of all, a moving target. Secondly, we can never really know our absolute altitude, only relative.

I posed these questions in a conversation with the Bosch Sensortec team at the MEMS Executive Congress where they were discussing the upcoming release of their new pressure sensors. They talk about being able to handle absolute altitude, so the obvious question is, what about the weather?

There are two pieces to the answer. The first deals with the fact that the baseline pressure isn’t constant. However, compared to pressure changes due to typical motion, the weather pressure changes extremely slowly. (If it’s changing so fast that it could be confused with you moving around, then navigation error is the least of your problems.) From a signal standpoint, the pressure changes of interest can be extracted with a high-pass filter, at least conceptually. More simply, you can think of it as a differential-mode measurement, with actual weather pressure being a common-mode error that’s subtracted out.

That allows you to get a reasonably accurate measure of relative altitude, but what about absolute altitude? Now you need to compare yourself to a sea-level baseline, and that baseline does depend on the weather. Well, there’s no magic available on this. The Bosch Sensortec software can get the data necessary to correct for the current sea-level pressure from the internet. Given that external sanity check, a pressure sensor can provide absolute altitude.

There are a couple other “faster-twitch” effects that can confuse pressure interpretation. The first is simply the fact that some buildings or rooms may have higher or lower air pressure based on the air conditioning or intentional implementation of things like positive pressure for a clean room. Even just opening a door can send a pressure surge. These effects won’t be eliminated or “de-convoluted” in the same way that weather impacts can be. Instead, the pressure data must be fused with other data to decide whether the pressure change reflects a change in altitude. Specifically, if an inertial sensor shows no vertical motion, then the pressure change can be “ignored” (although now it becomes the new baseline).

Pressure measurements also depend on temperature: a local temperature change can register as a pressure change when in fact the pressure didn’t change. Good temperature compensation is required (which is essentially data fusion between a thermometer and a pressure sensor); a pressure sensor less affected by temperature (as is claimed by Bosch Sensortec for their new BMP280) can also help.

Leave a Reply

featured blogs
Apr 24, 2024
Diversity, equity, and inclusion (DEI) are not just words but values that are exemplified through our culture at Cadence. In the DEI@Cadence blog series, you'll find a community where employees share their perspectives and experiences. By providing a glimpse of their personal...
Apr 23, 2024
We explore Aerospace and Government (A&G) chip design and explain how Silicon Lifecycle Management (SLM) ensures semiconductor reliability for A&G applications.The post SLM Solutions for Mission-Critical Aerospace and Government Chip Designs appeared first on Chip ...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Unlock the Productivity and Efficiency of a Connected Plant
In this episode of Chalk Talk, Amelia Dalton and Patrick Casey from Schneider Electric explore the multitude of benefits that mobility brings to industrial applications. They investigate how Schneider Electric’s Harmony Hub can simplify monitoring and testing, increase operational efficiency and connectivity openness in industrial plants, and how NFC technology can bring new innovation possibilities to IIoT applications.
Apr 23, 2024
153 views