editor's blog
Subscribe Now

Virtualizer and HAPS Shake Hands

Numerous systems tend to get used for verifying SoCs, and, with software now in the picture, the range is extended even further. We’ve talked before about the use of simulation, virtual prototypes, emulation, and prototyping as ways of getting both hardware and software to work, and to work together. Including their unification.

Synopsys recently took a move towards unification by bringing their Virtualizer virtual platform tool and their HAPS prototyping tool closer together. What this is means is that a design can be implemented with some parts in Virtualizer and some in HAPS and the two systems can talk to each other while running.

They actually run the SCE-MI 2 interface (traditionally found in the emulator-to-host connection), running over their UMRBus. This allows transactors to speed the interchange of data.

The architecture is very AMBA-centric; much of their DesignWare catalog relies on AMBA, and AMBA is popular, so this isn’t a big surprise. They’re open to other busses on an “ask us and we’ll consider it” basis.

The actual use of the tools isn’t so integrated. The two sides have separate programs that you run to manage them – there isn’t one unified interface that can talk to both sides. But this is partly due to the fact that they don’t traditionally see one person doing the whole thing. In the early stages, system integrators/architects would use the Virtualizer side and FPGA guys would implement the HAPS side; they would tag-team to get it up and running. Once that’s all done, then software programmers could use it (using computers more moderate than those required for the FPGA-building tools, for instance). So a single console might not have an associated use case.

The design partitioning process is also manual (although they could see the future possibility of tagging a design to automatically build the virtual and FPGA sides). Cross-triggering between the two sides is rudimentary.

This capability will be generally available in August. Why announce when they did? I’m guessing because they couldn’t talk the DAC guys into rescheduling the conference to August…

You can find more info in their release

 

Leave a Reply

featured blogs
Apr 24, 2024
Diversity, equity, and inclusion (DEI) are not just words but values that are exemplified through our culture at Cadence. In the DEI@Cadence blog series, you'll find a community where employees share their perspectives and experiences. By providing a glimpse of their personal...
Apr 23, 2024
We explore Aerospace and Government (A&G) chip design and explain how Silicon Lifecycle Management (SLM) ensures semiconductor reliability for A&G applications.The post SLM Solutions for Mission-Critical Aerospace and Government Chip Designs appeared first on Chip ...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

TE Connectivity MULTIGIG RT Connectors
In this episode of Chalk Talk, Amelia Dalton and Ryan Hill from TE Connectivity explore the benefits of TE’s Multigig RT Connectors and how these connectors can help empower the next generation of military and aerospace designs. They examine the components included in these solutions and how the modular design of these connectors make them a great fit for your next military and aerospace design.
Mar 19, 2024
5,065 views