editor's blog
Subscribe Now

Tunable RF

One of the more delicate parts of a cellphone is the RF circuitry responsible for getting the signals into and out of the phone.  According to UCSD’s Prof. Gabriel Rebeiz (who presented at the MEMS Business Forum, and who’s actually a pretty entertaining presenter), RF performance has been degrading from generation to generation as the number of bands has increased. From 4G on, he points to the need for better antennas, power amps, and filtering – as well as MIMO technology – in order to improve things.

And tunable RF circuits using MEMS-based variable capacitors seems to be what can get us there. He runs a lab that tests out the various solutions available, and he says that the MEMS versions are amazingly linear, with low loss, high quality, and other favorable characteristics. He paints them as 5 – 10 times better than silicon-on-insulator (SOI), silicon-on-sapphire (SOS), or barium strontium tinanate (BST) tuners.

He sees tunable antennas being common in 2013 and 2014, followed by tunable power amps, then notch filters, and then bandpass filters (if there are any). The two MEMS players that lead in the cellphone space and that presumably will be facilitating this change are WiSpry and Cavendish Kinetics.

But he also sees needs in base stations, instrumentation, defense, satellite communications, and automatic test equipment. And he waxed effusive over the performance of Omron’s MEMS switch, which dominates in this market. He simply calls it “amazing,” the “best RF MEMS switch in the world.”

The one gotcha for all of this, however, is cost. It must be low – 20 – 25 cents for a variable capacitor in a phone. He points to integrated CMOS and RF MEMS as the way to make this happen. Cavendish Kinetics’ technology is CMOS compatible; WiSpry includes CMOS on their chips. So now we just have to watch to see whether the prices get to where they need to be.

Leave a Reply

featured blogs
Apr 19, 2024
In today's rapidly evolving digital landscape, staying at the cutting edge is crucial to success. For MaxLinear, bridging the gap between firmware and hardware development has been pivotal. All of the company's products solve critical communication and high-frequency analysis...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...
Apr 18, 2024
See how Cisco accelerates library characterization and chip design with our cloud EDA tools, scaling access to SoC validation solutions and compute services.The post Cisco Accelerates Project Schedule by 66% Using Synopsys Cloud appeared first on Chip Design....

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured chalk talk

E-Mobility - Charging Stations & Wallboxes AC or DC Charging?
In this episode of Chalk Talk, Amelia Dalton and Andreas Nadler from Würth Elektronik investigate e-mobility charging stations and wallboxes. We take a closer look at the benefits, components, and functions of AC and DC wallboxes and charging stations. They also examine the role that DC link capacitors play in power conversion and how Würth Elektronik can help you create your next AC and DC wallbox or charging station design.
Jul 12, 2023
32,279 views