editor's blog
Subscribe Now

Small single-package IMU

Bosch-Sensortec recently announced a new integrated IMU, the BMI055.

Which, amongst other things, brings up the question: exactly what is an IMU? While researching this for a gyroscope article couple of years ago, I found that the term (which stands for “inertial measurement unit”) was used to refer generically to a class of sensors that use some type of inertia as a way of sensing motion. That inertia might be linear (using an accelerometer) or rotational (using a gyroscope).

The definition Bosch-Sensortec used differed from that, and as I look around now, I see other usage that is similar: an IMU is a combination of sensors – in particular, accelerometers and gyroscopes – for detecting motion. (Some so-called IMUs also include other sensors like magnetometers and possibly even a pressure sensor/barometer, for a so-called 10 degrees of freedom – 6 of which degenerate to 3). Whether this represents a change or simply varying definitions is unclear to me (it’s hard to recreate the internet of a couple years ago). Nonetheless, the term is, to some extent, overloaded; the combo definition seems to predominate now.

While we’re on definitions, you might think of a magnetometer, when used in a navigation application, as a compass (or eCompass) by analogy to an old-school needle compass, which is simply a magnetometer. But that’s not how the MEMS version is defined: a MEMS compass is the combination of an accelerometer and a magnetometer.

To be clear, Bosch-Sensortec announced what they claim to be the smallest combination accelerometer/gyroscope available. It is a multi-die integration (both with respect to the MEMS sensors and the accompanying ASICs); the size advantage comes from housing them in the same package.

As to whether those dice might ever merge, they said that it might happen, but that it’s more likely that the ASICs and MEMS chips will independently merge first, possibly followed by full MEMS/CMOS integration.

They’ve added a power-saving feature through this integration: the accelerometer can wake up the gyroscope. Gyros are notoriously power-hungry; you have to keep the proof mass moving (unlike an accelerometer). So the BMI055 allows the gyro to be turned off. Which isn’t a first, but they’ve sped up the wake-up time from a more typical 30 ms to 10 ms. This is intended to allow the gyro to be woken by the accelerometer without it taking so long that the gyro misses an event. The effect is to cut power in half.

The combined unit comes with free fusion software. There have been two ways of approaching fusion software: using either “tight” or “loose” coupling. Loose coupling means that the data from each sensor is independently processed to some degree before being presented for munging with the output of other sensors. Tight coupling performs the fusion with the raw data from the sensors.

Loose coupling is easier to do (and less reliant on the low-level data format of a sensor), but it’s less accurate. Tight coupling provides a more accurate result, but is more complex and needs to work at the lowest data level (which ties it more closely to the specific sensor).

Bosch-Sensortec uses both: where loose coupling provides sufficient accuracy, they use it, reverting to tight coupling when necessary. Where they make that cut is something they’re keeping to themselves.

You can find more information in their release

Leave a Reply

featured blogs
Apr 25, 2024
Structures in Allegro X layout editors let you create reusable building blocks for your PCBs, saving you time and ensuring consistency. What are Structures? Structures are pre-defined groups of design objects, such as vias, connecting lines (clines), and shapes. You can combi...
Apr 24, 2024
Learn about maskless electron beam lithography and see how Multibeam's industry-first e-beam semiconductor lithography system leverages Synopsys software.The post Synopsys and Multibeam Accelerate Innovation with First Production-Ready E-Beam Lithography System appeared fir...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Achieving High Power Density with IGBT and SiC Power Modules
Sponsored by Mouser Electronics and Infineon
Recent trends in the inverter market have made high power density, scalability, and ease of assembly more important than ever before. In this episode of Chalk Talk, Amelia Dalton and Abraham Markose from Infineon examine how Easy & Econo power modules from Infineon can help solve common inverter design requirements. They explore the benefits and construction of these modules and how you can take advantage of them in your next design.
May 19, 2023
37,483 views