editor's blog
Subscribe Now

We Won’t Call You; Just Call Us

One of the challenges with sensors is that, at their most fundamental level, all they do is provide some value reflecting whatever it is they’re sensing. If you want to know that value, you have to go get the value. “You” typically being the main processor in the system.

That’s easy enough if it’s something you occasionally do under the direction of a program, but if you want the sensor to alert you when something happens, then you have to poll constantly so that you know when something changed. That can steal a lot of cycles from the processor, and can be a particular issue for smartphones that have lots of sensors.

I had a discussion about this with Bosch Sensortec’s Leopold Beer at the recent MEMS Executive Congress. He said that with their IMUs, polling still dominates, but that they’ve got a state machine in there that can be programmed to fire an interrupt; their interface supports both polling and interrupts.

For example, the unit has an auto-sleep mode, and can be programmed to wake itself up. You can program in thresholds and timing. You can have it fire an interrupt when changing between portrait and landscape modes; the angles and hysteresis levels are programmable. This relieves the application processor of some of the more mundane polling duties.

For more complex tasks like counting the number of steps you take when running, much more processing is required, so for those tasks the processor still has to go poll the sensor and do the data munging itself.

One solution is to have a separate sensor microcontroller that can manage multiple sensors to offload some of the application processor duties in a programmable way.

A dedicated microcontroller on the same die as the sensor might make sense for so-called “sensor fusion” applications – where the “sensed” state isn’t just the result of a single sensor or even sensor type, but the accumulation of data from numerous sensors synthesized into a single combined more “intelligent” state. It’s certainly possible from a technology standpoint; the only question is whether the cost is justified.

Something to watch for as sensors continue to populate the world…

Leave a Reply

featured blogs
Apr 19, 2024
In today's rapidly evolving digital landscape, staying at the cutting edge is crucial to success. For MaxLinear, bridging the gap between firmware and hardware development has been pivotal. All of the company's products solve critical communication and high-frequency analysis...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...
Apr 18, 2024
See how Cisco accelerates library characterization and chip design with our cloud EDA tools, scaling access to SoC validation solutions and compute services.The post Cisco Accelerates Project Schedule by 66% Using Synopsys Cloud appeared first on Chip Design....

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured chalk talk

Enabling the Evolution of E-mobility for Your Applications
The next generation of electric vehicles, including trucks, buses, construction and recreational vehicles will need connectivity solutions that are modular, scalable, high performance, and can operate in harsh environments. In this episode of Chalk Talk, Amelia Dalton and Daniel Domke from TE Connectivity examine design considerations for next generation e-mobility applications and the benefits that TE Connectivity’s PowerTube HVP-HD Connector Series bring to these designs.
Feb 28, 2024
6,808 views